[Home] [Trang Tiếng Việt]

The Biochemical Origin of Pain

References

1. Sherrington CS. The Integrative Action of the Nervous System. New Haven, Connecticut: Yale Univ. Press; 1906.

2. Livingstone WK. Pain Mechanisms. New York: Macmillan; 1943.

3. Online Exhibit. Pain and Suffering in History–Narratives of Science, Medicine and Culture. John C. Liebeskind History of Pain Collection at the Louise M. Darling Biomedical Library, UCLA.

4. Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965 Nov 19;150(699):971–979. [PubMed]

5. Melzack R. Pain: past, present and future. Can J Exp Psychol. 1993 Dec;47(4):615–629. [PubMed]

6. Pain terms: a list with definitions and notes on usage. Recommended by the IASP Subcommittee on Taxonomy. Pain. 1979 Jun;6(3):249. [No authors listed] [PubMed]

7. Ranney Don., MDFRCS Anatomy of Pain. Paper presented at the Ontario Inter-Urban Pain Conference; Waterloo. 1996.

8. Boivie J. Central pain syndromes. In: Campell JN, editor. Pain 1996 - An Updated Review. Seattle: IASP Press; pp. 23–29.

9. Dubner R, Basbaum A. Spinal dorsal horn plasticity following tissue or nerve injury. Chapter 11. In: Walls PD, Melzack R, editors. Textbook of Pain. 3rd ed. Edinburgh: Churchill Livingstone; 1994. pp. 225–241. Chapter 11.

10. Jensen TS. Mechanisms of neuropathic pain. In: Campbell JN, editor. Pain 1996 - An Updated Review. Seattle: IASP Press; pp. 77–86.

11. Merskey HM, Bogduk N. Classification of Chronic Pain. 2nd ed. Seattle: IASP Press; 1994. p. 211.

12. Dickenson AH. Editorial I - Gate Control Theory of pain stands the test of time. British Journal of Anaesthesia. 2002;Vol. 88(No 6):755–757. [PubMed]

13. McMahon SB, Lewin GR, Wall PD. Central hyperexcitability triggered by noxious inputs. Curr Opin Neurobiol. 1993 Aug;3(4):602–610. [PubMed]

14. Millan MJ. The induction of pain: an integrative review. Prog Neurobiol. 1999;57:1–164. [PubMed]

15. Dickenson AH. Spinal cord pharmacology of pain. Br J Anaesth. 1995;75:193–200. [PubMed]

16. Suzuki R, Dickenson AH. Neuropathic pain: nerves bursting with excitement. Neuroreport. 2000;11:R17–R21. [PubMed]

17. Boden SD, Davis DO, Dina TS, Patronas NJ, Wiesel SW. Abnormal magnetic-resonance scans of the lumbar spine in asymptomatic subjects. A prospective investigation. J Bone Joint Surg Am. 1990 Mar;72(3):403–408. [PubMed]

18. Jensen MC, Brant-Zawadzki MN, Obuchowski N, Modic MT, Malkasian D, Ross JS. Magnetic resonance imaging of the lumbar spine in people without back pain. N Engl J Med. 1994 Jul 14;331(2):69–73. [PubMed]

19. Boos N, Semmer N, Elfering A, Schade V, Gal I, Zanetti M, Kissling R, Buchegger N, Hodler J, Main CJ. Natural history of inpiduals with asymptomatic disc abnormalities in magnetic resonance imaging: predictors of low back pain-related medical consultation and work incapacity. Spine. 2000 Jun 15;25(12):1484–1492. [PubMed]

20. Moseley JB, O'Malley K, Petersen NJ, Menke TJ, Brody BA, Kuykendall DH, Hollingsworth JC, Ashton CM, Wray NP. A controlled trial of arthroscopic surgery for osteoarthritis of the knee. N Engl J Med. 347:81–88. [PubMed]

21. Omoigui S. State-of-the-Art Technologies Publishers. California: Hawthorne; 2002. The Biochemical Origin of Pain: How a new law and new drugs have led to a medical breakthrough in the treatment of persistent pain.

22. Dray A. Inflammatory mediators of pain. Br J Anaesth. 1995 Aug;75(2):125–131. [PubMed]

23. Goldbach-Mansky Raphaela, 1, Lee Jennifer M, Hoxworth Joseph M, Smith David, II, Duray Paul, Schumacher Ralph H, Jr, Yarboro Cheryl H, Klippel John, Kleiner David, El-Gabalawy Hani S. Active synovial matrix metalloproteinase-2 is associated with radiographic erosions in patients with early synovitis. Arthritis Res. 2000;2:145–153. 1. [PMC free article] [PubMed]

24. Zimmermann M. Pathophysiological mechanisms of fibromyalgia. Clin J Pain. 1991;7 Suppl 1:S8–S15. [PubMed]

25. Sakaue G, Shimaoka M, Fukuoka T, Hiroi T, Inoue T, Hashimoto N, Sakaguchi T, Sawa Y, Morishita R, Kiyono H, Noguchi K, Mashimo T. NF-kappa B decoy suppresses cytokine expression and thermal hyperalgesia in a rat neuropathic pain model. Neuroreport. 2001 Jul 20;12(10):2079–2084. [PubMed]

26. Samad TA, Moore KA, Sapirstein A, Billet S, Allchorne A, Poole S, Bonventre JV, Woolf CJ. Interleukin-1beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature. 2001 Mar 22;410(6827):471–475. [PubMed]

27. Yaksh TL, Lynch C III, Zapol WM, Maze M, Biebuyck JF, Saidman LJ, editors. Anesthesia: Biologic Foundations. Philadelphia: Lippincott; 1997. pp. 685–718.

28. Dickenson AH, Stanfa LC, Chapman V, Yaksh TL. In: Anesthesia: Biologic Foundations. Yaksh TL, Lynch C III, Zapol WM, Maze M, Biebuyck JF, Saidman LJ, editors. Philadelphia: Lippincott; 1997. pp. 611–624.

29. Oyelese AA, Rizzo MA, Waxman SG, Kocsis JD. Differential effects of NGF and BDNF on axotomy-induced changes in GABAA receptor-mediated conductance and sodium currents in cutaneous afferent neurons. Journal of Neurophysiology. 1997;78:31–42. [PMC free article] [PubMed]

30. Waxman SG. The molecular pathophysiology of pain: abnormal expression of sodium channel genes and its contributions to hyperexcitability in primary sensory neurons. Pain. 1999;6:S133–S140. [PubMed]

31. Black JA, Langworthy K, Hinson AW, Dibb-Hajj SD, Waxman SG. NGF has opposing effects on Na+ channel III and SNS gene expression in spinal sensory neurons. NeuroReport. 1997;8:2331–2335. [PubMed]

32. Everill B, Kocsis JD. Reduction of potassium currents in identified cutaneous afferent DRG neurons after axotomy. Journal of Neurophysiology. 1999;82:700–708. [PubMed]

33. Ramer MS, Bisby MA. Adrenergic innervation of rat sensory ganglia following proximal or distal painful sciatic neuropathy: distinct mechanisms revealed by anti-NGF treatment. Eur J Neurosci. 1999 Mar;11(3):837–846. [PubMed]

34. Horai R, Saijo S, Tanioka H, et al. Development of chronic inflammatory arthropathy resembling rheumatoid arthritis in interleukin 1 receptor antagonist -deficient mice. J Exp Med. 2000;191:313–320. [PMC free article] [PubMed]

35. Arend WP. Interleukin-1 receptor antagonist. Adv Immunol. 1993;54:167–227. [PubMed]

36. van Lent PLEM, van de Loo FAJ, Holthuysen AEM, van den Bersselaar LAM, Vermeer H, van den Berg WB. Major role for interleukin 1 but not for tumor necrosis factor in early cartilage damage in immune complex arthritis in mice. J Rheumatol. 1995;22:2250–2258. [PubMed]

37. Horai R, Saijo S, Tanioka H, et al. Development of chronic inflammatory arthropathy resembling rheumatoid arthritis in interleukin 1 receptor antagonist -deficient mice. J Exp Med. 2000;191:313–320. [PMC free article] [PubMed]

38. Gravallese EM, Goldring SR. Cellular mechanisms and the role of cytokines in bone erosions in rheumatoid arthritis. Arthritis Rheum. 2000;43:2143–2151. [PubMed]

39. van Lent PLEM, van de Loo FAJ, Holthuysen AEM, van den Bersselaar LAM, Vermeer H, van den Berg WB. Major role for interleukin 1 but not for tumor necrosis factor in early cartilage damage in immune complex arthritis in mice. J Rheumatol. 1995;22:2250–2258. [PubMed]

40. Sehgal PB, Wang L, Rayanade R, Pan H, Margulies L. Interleukin-6 type Cytokines. In: Mackiewicz A, Koji A, Sehgal PB, editors. Interleukin-6-type Cytokines. Vol. 762. New York: New York Academy of Sciences; 1995. pp. 1–14.

41. Keller EvanT, Wanagat Jon, Ershler WB. Molecular and cellular biology of interleukin-6 and its receptor. Frontiers in Bioscience. 1996 December 1;1:d340–d357. [PubMed]

42. Akira S, Taga T, Kishimoto T. Interleukin-6 in biology and medicine. Adv Immunol. 1993;54:1–78. [PubMed]

43. Kurihara N, Bertolini D, Suda T, Akiyama Y, Roodman GD. IL-6 stimulates osteoclast-like multinucleated cell formation in long term human marrow cultures by inducing IL-1 release. J Immunol. 1990;144:4226–4230. [PubMed]

44. Tamura T, Udagawa N, Takahashi N, Miyaura C, Tanaka S, Koishihara Y, Ohsugi Y, Kumaki K, Taga T, Kishimoto T, Suda T. Soluble interleukin-6 receptor triggers osteoclast formation by interleukin-6. Proc Natl Acad Sci USA. 1993;90:11924–11928. [PMC free article] [PubMed]

45. Passeri G, Girasole G, Markus T, Abrams JS, Manolagas SC, Jilka RL. 17b-estradiol regulates IL-6 production and osteoclast development in murine calvaria cell cultures. J Bone Miner Res. 1991;6:S263.

46. Girasole G, Jilka RL, Passeri F, Boswell S, Boder G, Williams DC, Manologas SC. 17b-Estradiol inhibits interleukin-6 production by bone marrow-derived stromal cells and osteoblasts in vitro: a potential mechanism for the antiosteoporotic effect of estrogens. J Clin Invest. 1992;89:883–891. [PMC free article] [PubMed]

47. Jilka RL, Hangoc C, Girasole G, Passeri G, Williams DC, Abrams JS, Boyce, H B. Increased osteoclast development after estrogen loss: Mediation by interleukin-6. Science. 1992;257:88–91. [PubMed]

48. Miyaura C, Kusano K, Masuzawa T, Chaki O, Onoe Y, Aoyagi M, Sasaki T, Tamura T, Koishihara Y, Ohsugi Y, Suda T. Endogenous bone resorbing factors in estrogen deficiency: Cooperative effects of IL-1 and IL-6. J Bone Miner Res. 1995;10:1365–1373. [PubMed]

49. Black KS, Mundy GR, Garrett IR. Interleukin-6 causes hypercalcemia in vivo, and enhances the bone resorbing potency of interleukin-1 and tumor necrosis factor by two orders of magnitude in vitro. J Bone Miner Res. 1991;6:S271.

50. Greenfield EM, Shaw SM, Gornik SA, Banks MA. Adenyl cyclase and interleukin 6 are downstream effectors of parathyroid hormone resulting in stimulation of bone resorption. J Clin Invest. 1995;96:1238–1244. [PMC free article] [PubMed]

51. Lφwik CWGM, van der Pluijm G, Bloys H, Hoekman K, Bijvoet OLM, Asrden LA, Papapoulos SE. Parathyroid hormone (PTH) and PTHlike protein (PLP) stimulate interleukin-6 production by osteogenic cells: A possible role of interleukin-6 in osteoclastogenesis. Biochem Biophys Res Comm. 1989;162:1546–1552. [PubMed]

52. Ishimi Y, Miyaura C, Jin CH, Akatsu T, Abe E, Nakamura Y, Yamaguchi A, Yoshiki S, Matsuda T, Hirano T, Kishimoto T, Suda T. IL-6 is produced by osteoblasts and induces bone resorption. J Immunol. 1990;145:3297–3303. [PubMed]

53. Roodman GD, Kurihara N, Ohsaki Y, Kukita T, Hosking D, Demulder A, Singer FR. Interleukin-6: a potential autocrine/paracrine factor in Paget's disease of Bone. J Clin Invest. 1992;89:46–52. [PMC free article] [PubMed]

54. Ohsaki Y, Takahashi S, Scarcez T, Demulder A, Nishihara T, Williams R, Roodman GD. Evidence for an autocrine/paracrine role for interleukin-6 in bone resorption by giant cells from giant cell tumors of bone. Endocrinology. 1992;131:2229–2234. [PubMed]

55. De La Mata J, Uy HL, Guise TA, Story B, Boyce BF, Mundy GR, Roodman GD. Interleukin-6 enhances hypercalcemia and bone resorption mediated by parathyroid hormone-related protein in vivo. J Clin Invest. 1995;95:2846–2852. [PMC free article] [PubMed]

56. Takaoka Y, Niwa S, Nagai H. Interleukin-1beta induces interleukin-6 production through the production of prostaglandin E(2) in human osteoblasts, MG-63 cells. J Biochem (Tokyo) 1999 Sep;126(3):553–558. [PubMed]

57. Tabibzadeh S, Kong QF, Babaknia A, May LT. Progressive rise in the expression of intereleukin-6 in human endometrium during menstrual cycle is initiated during the implantation window. Mol Hum Reprod. 1995;1:2793–2799. [PubMed]

58. Hama T, Miyamoto M, Tsukui H, Nishio C, Hatanaka M. Interleukin-6 as a neurotrophic factor for promoting the survival of cultured basal forebrain cholinergic neurons from postnatal rats. Neurosci Lett. 1989;104:340–344. [PubMed]

59. Arruda JL, Sweitzer S, Rutkowski MD, DeLeo JA. Intrathecal anti-IL-6 antibody and IgG attenuates peripheral nerve injury-induced mechanical allodynia in the rat: possible immune modulation in neuropathic pain. Brain Res. 2000 Oct 6;879(1–2):216–225. [PubMed]

60. Kotake S, Sato K, Kim KJ, Takahashi N, Udagawa N, Nakamura I, Yamaguchi A, Kishimoto T, Suda T, Kashiwazaki S. Interleukin-6 and soluble interleukin-6 receptors in the synovial fluids form rheumatoid arthritis patients are responsible for osteoclast-like cell formation. J Bone Miner Res. 1996;11:88–95. [PubMed]

61. Houssiau F, Devoglaer JP, Van Damme J, Nagant de Deuxchaisnes C, Van Snick J. Interleukin 6 in synovial fluid and serum of patients with rheumatoid arthritis and other inflammatory arthritides. Arthritis Rheum. 1988;31:784–788. [PubMed]

62. Kameda H, Takeuchi T. Osteoporosis associated with rheumatoid arthritis. Nippon Rinsho. 2003 Feb;61(2):292–298. [PubMed]

63. Kotani N, Kushikata T, Hashimoto H, Kimura F, Muraoka M, Yodono M, Asai M, Matsuki A. Intrathecal Methylprednisolone for Intractable Postherpetic Neuralgia. N Engl J Med. 2000 Nov 23;343(21):1514–1519. [PubMed]

64. Bethea JR, Nagashima H, Acosta MC, Briceno C, Gomez F, Marcillo AE, Loor K, Green J, Dietrich WD. Systemically administered interleukin-10 reduces tumor necrosis factor-alpha production and significantly improves functional recovery following traumatic spinal cord injury in rats. J Neurotrauma. 1999 Oct;16(10):851–863. [PubMed]

65. Plunkett JA, Yu CG, Easton JM, Bethea JR, Yezierski RP. Effects of interleukin-10 (IL-10) on pain behavior and gene expression following excitotoxic spinal cord injury in the rat. Exp Neurol. 2001 Mar;168(1):144–154. [PubMed]

66. Samad TA, Moore KA, Sapirstein A, Billet S, Allchorne A, Poole S, Bonventre JV, Woolf CJ. Interleukin-1beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature. 2001 Mar 22;410(6827):471–475. Comment in: Nature. 2001 Mar 22;410(6827):425, 427. [PubMed]

67. Kayama S, Konno S, Olmarker K, Yabuki S, Kikuchi S. Incision of the anulus fibrosis induces nerve root morphologic, vascular, and functional changes. An experimental study. Spine. 1996;21:2539–2543. [PubMed]

68. Olmarker K, Rydevik B, Nordborg C. Autologous nucleus pulposus induces neurophysiologic and histologic changes in porcine cauda equina nerve roots. Spine. 1993;18:1425–1432. [PubMed]

69. Olmarker K, Myers RR. Pathogenesis of sciatic pain: Role of herniated nucleus pulposus and deformation of spinal nerve root and DRG. Pain. 1998;78:9–105. [PubMed]

70. Myers RR, Wagner R, Sorkin LS. Hyperalgesic Actions of Cytokines on Peripheral Nerves. In: Watkins LR, Maier SF, editors. Cyokines and Pain: Progress in Inflammation research. Basal: Birkhauser Verlag; 1999. pp. 133–158.

71. Borden P, Heller RA. Transcriptional control of matrix metalloproteinases and the tissue inhibitors of matrix metalloproteinases. Crit Rev Eukaryot Gene Expr. 1997;7:159–178. [PubMed]

72. He C. Molecular mechanism of transcriptional activation of human gelatinase B by proximal promoter. Cancer Lett. 1996;106:185–191. [PubMed]

73. Goldbach-Mansky R, Lee JM, Hoxworth JM, Smith D, 2nd, Duray P, Schumacher RH, Jr, Yarboro CH, Klippel J, Kleiner D, El-Gabalawy HS. Active synovial matrix metalloproteinase-2 is associated with radiographic erosions in patients with early synovitis. Arthritis Res. 2000:145–153. [PMC free article] [PubMed]

74. Laughlin TM, Bethea JR, Yezierski RP, Wilcox GL. Cytokine involvement in dynorphin-induced allodynia. Pain. 2000 Feb;84(2–3):159–167. [PubMed]

75. Olgart L. A breakthrough in the research on pain. Survey of the synaptic network may result in new analgesics. Lakartidningen. 1997 Nov 26;94(48):4461–4466. [PubMed]

Source: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2766416/